

Edexcel GCSE Physics

Topic 1: Key Concepts of Physics

Notes

(Content in bold is for Higher Tier only)

▶ Image: Second Second

Key Concepts of Physics

SI Units

- -Metre, m
- Kilogram, kg
- Second, s _
- Ampere, A _
- Kelvin, K -
- Mole, mol
- Volt, V

- Frequency, hertz, Hz
- Force, newton, N
- Energy, joule, J
- Power, watt, W
- Pressure, pascal, Pa
- Charge, coulomb, C
- Resistance, ohm, Ω
- Magnetic Flux Density, tesla, T

Prefixes

giga	G	x 10 ⁹	1 billion
mega	Μ	x 10 ⁶	1 million
kilo	k	x 10 ³	1 thousand
centi	С	x 10 ⁻²	1 hundredth
mili	m	x 10 ⁻³	1 thousandth
micro	μ	x 10 ⁻⁶	1 millionth
nano	n	x 10 ⁻⁹	1 billionth

Equations to Learn

distance = speed \times time

$$a = \frac{v - u}{t}$$

F = ma

weight
$$=$$
 mg

$$\Delta GPE = mg\Delta h$$

$$KE = \frac{1}{2}mv^2$$

usefully energy output efficiency = total energy input

wave speed = $v = f\lambda$

wave speed =
$$v = \frac{x}{t}$$

work done = force \times distance (moved in the direction of the force) = E = Fd

$$Power = \frac{work \text{ done}}{time} = \frac{energy \text{ transferred}}{time \text{ taken}}$$

Moment of force = force \times perpendicular distance

energy transferred = charge moved \times pd = E = QV

▶ Image: Contraction PMTEducation

www.pmt.education

 $charge = current \times time = Q = It$

Voltage = Current \times Resistance = V = IR

Electrical Power = current \times pd = P = IV

Electrical power = $current^2 \times resistance = P = I^2 R$

density
$$=\frac{\text{mass}}{\text{volume}} = \rho = \frac{m}{V}$$

force on spring = spring constant × extension = $F = k\Delta x$

pressure
$$=\frac{\text{force}}{\text{area}} = P = \frac{F}{A}$$

Equations Given

energy transferred = IVt

 $\frac{\text{pd across primary}}{\text{pd across secondary}} = \frac{\text{number of turns in primary}}{\text{number of turns in secondary}} = \frac{V_p}{V_s} = \frac{N_p}{N_s}$ $\text{power of primary} = \text{power of secondary} = V_p \times I_p = V_s \times I_s$ $\text{change in energy} = \text{mass} \times \text{specific heat capacity} \times \text{temp change} = \Delta Q = \text{mc}\Delta \theta$ $\text{energy} = \text{mass} \times \text{specific latent heat} = Q = \text{ml}$ $\text{pressure and volume change} = P_1 V_1 = P_2 V_2$ $\text{energy transferred} = \frac{1}{2} \text{k}(\Delta x)^2$ $v^2 - u^2 = 2\text{as}$

Higher

 $force \ on \ a \ conductor = magnetic \ flux \ density \times current \times length = F = BIl$ $pressure \ from \ liquid = height \ of \ column \times density \ of \ liquid \times gravity = P = h\rho g$

momentum = p = mv

$$\mathbf{F} = \frac{\mathbf{m}\mathbf{v} - \mathbf{m}\mathbf{u}}{\mathbf{t}}$$

▶ Image: PMTEducation

www.pmt.education