Edexcel GCSE Physics

Topic 1: Key Concepts of Physics
Notes
(Content in bold is for Higher Tier only)

Key Concepts of Physics

SI Units

- Metre, m
- Kilogram, kg
- Second, s
- Ampere, A
- Kelvin, K
- Mole, mol
- Volt, V
- Frequency, hertz, Hz
- Force, newton, N
- Energy, joule, J
- Power, watt, W
- Pressure, pascal, Pa
- Charge, coulomb, C
- Resistance, ohm, Ω
- Magnetic Flux Density, tesla, T

Prefixes

giga	G	$\times 10^{9}$	1 billion
mega	M	$\times 10^{6}$	1 million
kilo	k	$\times 10^{3}$	1 thousand
centi	C	$\times 10^{-2}$	1 hundredth
mili	m	$\times 10^{-3}$	1 thousandth
micro	μ	$\times 10^{-6}$	1 millionth
nano	n	$\times 10^{-9}$	1 billionth

Equations to Learn

$$
\begin{gathered}
\text { distance }=\text { speed } \times \text { time } \\
a=\frac{v-u}{t} \\
\mathrm{~F}=\mathrm{ma} \\
\text { weight }=\mathrm{mg} \\
\Delta \mathrm{GPE}=\mathrm{mg} \Delta \mathrm{~h} \\
\text { KE }=\frac{1}{2} \mathrm{mv}^{2} \\
\text { efficiency }=\frac{\text { usefully energy output }}{\text { total energy input }} \\
\text { wave speed }=\mathrm{v}=\mathrm{f} \lambda \\
\text { wave speed }=\mathrm{v}=\frac{\mathrm{x}}{\mathrm{t}}
\end{gathered}
$$

work done $=$ force \times distance (moved in the direction of the force) $=\mathrm{E}=\mathrm{Fd}$

$$
\text { Power }=\frac{\text { work done }}{\text { time }}=\frac{\text { energy transferred }}{\text { time taken }}
$$

Moment of force $=$ force \times perpendicular distance
energy transferred $=$ charge moved $\times \mathrm{pd}=\mathrm{E}=\mathrm{QV}$

> charge $=$ current \times time $=\mathrm{Q}=\mathrm{It}$
> Voltage $=$ Current \times Resistance $=\mathrm{V}=\mathrm{IR}$
> Electrical Power $=$ current $\times \mathrm{pd}=\mathrm{P}=\mathrm{IV}$

Electrical power $=$ current $^{2} \times$ resistance $=P=I^{2} R$

$$
\text { density }=\frac{\text { mass }}{\text { volume }}=\rho=\frac{\mathrm{m}}{\mathrm{~V}}
$$

force on spring $=$ spring constant \times extension $=\mathrm{F}=\mathrm{k} \Delta \mathrm{x}$

$$
\text { pressure }=\frac{\text { force }}{\text { area }}=P=\frac{F}{A}
$$

Equations Given

energy transferred $=I V t$
$\frac{\text { pd across primary }}{\text { pd across secondary }}=\frac{\text { number of turns in primary }}{\text { number of turns in secondary }}=\frac{V_{p}}{V_{s}}=\frac{N_{p}}{N_{s}}$ power of primary $=$ power of secondary $=V_{p} \times I_{p}=V_{s} \times I_{s}$
change in energy $=$ mass \times specific heat capacity \times temp change $=\Delta Q=m c \Delta \theta$

$$
\begin{gathered}
\text { energy }=\text { mass } \times \text { specific latent heat }=Q=m l \\
\text { pressure and volume change }=P_{1} V_{1}=P_{2} V_{2} \\
\text { energy transferred }=\frac{1}{2} k(\Delta x)^{2}
\end{gathered}
$$

$$
\mathrm{v}^{2}-\mathrm{u}^{2}=2 \mathrm{as}
$$

Higher

force on a conductor $=$ magnetic flux density \times current \times length $=\mathbf{F}=$ BII
pressure from liquid $=$ height of column \times density of liquid \times gravity $=\mathbf{P}=\mathbf{h \rho g}$

$$
\begin{gathered}
\text { momentum }=\mathbf{p}=\mathbf{m v} \\
\mathbf{F}=\frac{\mathbf{m v}-\mathbf{m u}}{\mathbf{t}}
\end{gathered}
$$

